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Biological context

Antifreeze protein (AFP) exists in body fluids of po-
lar fish and insect larva living in cold environments,
where the temperature is subzero. AFP has a unique
ability to adsorb to a hexagonal ice crystal to inhibit its
growth, which results in a depression of the freezing
point of water, leading to a protection of tissues from
freezing injury. We have examined a new Type III
AFP intramolecular dimer named RD3 by NMR spec-
troscopy. RD3 comprises N- (residues Asn1-Glu64)
and C- (residues Ser74-Glu134) terminal domains con-
nected by a nine-residue linker (D65GTTSPGLK73)
(Wang et al., 1995). Each domain has over 80% ho-
mology in primary structure with the ordinary Type III
AFP monomer, and both domains have 80% homology
with each other. RD3 is the only species of intramole-
cular dimer among all known types and isoforms of
AFPs, and possesses about 1.9 times higher activ-
ity compared with the ordinary Type III AFP on a
molar basis. Although the structure of the N-domain
plus linker portion (residues 1–76) was clarified re-
cently (Miura et al., 1999), the overall structure of
intact RD3 is not determined yet. We have succeeded
in expressing non-labeled,15N-labeled and13C-/15N-
labeled recombinant protein of RD3, for which the
antifreeze activity was identified. Here we report the
2D- and 3D-NMR-based assignments of the1H, 13C
and15N resonances of RD3.
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Methods and results

RD3 protein was isolated from theE. coli expres-
sion system constructed in our group. A DNA en-
coding RD3 was designed and synthesized according
to the amino acid sequence of RD3. The synthe-
sized DNA was ligated with pKK223-3UC vector.
E. coli JM105 was transformed with the expres-
sion plasmid. The transformant was cultured in 2×
YT medium. RD3 protein was overexpressed in the
transformant and purified by sequential column chro-
matography. The15N- and 13C/15N-labeled proteins
were obtained from the transformant cultured in M10
minimal medium containing15N-labeled NH4Cl and
15N-labeled NH4Cl/13C-labeled glucose, respectively.

For 2D- and 3D-NMR experiments performed in
H2O solution, 8 mg of the lyophilized non-labeled and
labeled RD3 samples was dissolved in 0.5 ml of H2O
(H2O : D2O = 9 : 1) containing 25 mM of KCl and
1 mM of NaN3 to give a final concentration of 1 mM
(pH 6.8). For the experiments performed in D2O so-
lution, 8 mg of the non-labeled sample was dissolved
in 100% D2O containing 25 mM of KCl and 1 mM of
NaN3 to give a final concentration of 1 mM (pH 6.8).

The NMR experiments were performed on JEOL
JNM-Alpha and Varian Unity-500 spectrometers at
4 ◦C. The following sets of 2D- and 3D-NMR data
were acquired for the spectral assignments of the1H-,
13C- and15N-resonances: (1) NOESY in D2O (70 ms,
512 × 256); (2) {15N-1H}-HSQC (512 × 256);
(3) {13C-1H}-HSQC (512 × 256); (4) 15N-edited
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Figure 1. 1H-15N-HSQC spectrum of RD3 obtained at 4◦C.
15N-labeled RD3 sample was dissolved in 0.5 ml of H2O
(H2O : D2O= 9 : 1) containing 25 mM of KCl and 1 mM of NaN3
to give a final concentration of 1 mM (pH 6.8).

NOESY (100 ms, 512× 128× 32); (5) 15N-edited
TOCSY (100 ms, 512× 128 × 32); (6) HNCA
(512× 32× 32); (7) HNCACB (512× 128× 32);
(8) CBCA(CO)NH (512× 40× 26); (9) C(CO)NH
(512× 96× 32); (10) HC(CO)NH (512× 96× 32);
(11) HCCH-TOCSY (512× 64× 96). The 3D-HNHA
(512× 160× 96) experiments were performed to ob-
tain the3J-coupling constants between NH and CαH
protons.

In the 2D and 3D experiments, the1H chemical
shifts were referenced to 2,2-dimethyl-2-silapentane-
5-sulfonate sodium salt (DSS). The13C and 15N
chemical shifts were referenced using internal DSS
and the frequency ratios4 (15N/1H) = 0.101329118,
(13C/1H)= 0.251449519 (Wishart et al., 1995). All of
the NMR data were processed and analyzed on an SGI
Power Indigo2 workstation (Silicon Graphics, Moun-
tain View, CA) using NMRPipe (Delaglio et al., 1995)
and PIPP (Garrett et al., 1991) software.

The resonance assignments of RD3 were per-
formed successfully by employing the 2D- and 3D-
NMR spectra using the standard strategy (Wüthrich,
1986; Evans, 1995). Figure 1 shows a well-separated
1H-15N-HSQC spectrum of RD3, in which the as-
signments are indicated for each cross peak. For a
small overlapping region of Figure 1, the resonance
assignments were performed from a set of13C-edited
3D-NMR spectra. We could identify all resonances

originating from the nine residues of the linker portion
of RD3.

Extent of assignments and data deposition

All of the 1HN-, 1H-, 15N-, 13Cα-, and 13Cβ-
assignments were completed except for the13Cβ-
resonances of Ile32 and Pro57. We compared the
chemical shifts of all the assigned resonances orig-
inating from the N-terminal globular domain (Ser4-
Glu64) with those from the C-terminal globular do-
main (Ser74-Glu134). It was found that the chemi-
cal shifts of the Cα-resonances of the N-domain are
almost identical to those of the C-domain within
+/−2.0 ppm for the conserved residues. However,
the chemical shifts of the conserved residues are not
perfectly coincident for the15N, 1HN, and 13CαH-
resonances between the two domains. A total of
80 3JNH−Hα coupling constants out of 134 were
identified without signal overlapping. The chemical
shift assignments and the3JNH−Hα coupling constants
have been deposited in the BioMagResBank database
(http://www.bmrb.wisc.edu) under accession number
4449.
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