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Biological context

Antifreeze protein (AFP) exists in body fluids of po-
lar fish and insect larva living in cold environments,

Methods and results

RD3 protein was isolated from thE. coli expres-
sion system constructed in our group. A DNA en-

where the temperature is subzero. AFP has a uniquecoding RD3 was designed and synthesized according

ability to adsorb to a hexagonal ice crystal to inhibit its
growth, which results in a depression of the freezing
point of water, leading to a protection of tissues from
freezing injury. We have examined a new Type Il
AFP intramolecular dimer named RD3 by NMR spec-
troscopy. RD3 comprises N- (residues AdBlut%)
and C- (residues SE¥Glu'34) terminal domains con-
nected by a nine-residue linker BB TTSPGLK'3)
(Wang et al., 1995). Each domain has over 80% ho-
mology in primary structure with the ordinary Type Il

AFP monomer, and both domains have 80% homology

with each other. RD3 is the only species of intramole-
cular dimer among all known types and isoforms of

to the amino acid sequence of RD3. The synthe-
sized DNA was ligated with pKK223-3UC vector.
E. coli JM105 was transformed with the expres-
sion plasmid. The transformant was cultured ir 2
YT medium. RD3 protein was overexpressed in the
transformant and purified by sequential column chro-
matography. Thé®N- and 13C/*°N-labeled proteins
were obtained from the transformant cultured in M10
minimal medium containing®N-labeled NHCI and
15N-labeled NHCI/A3C-labeled glucose, respectively.
For 2D- and 3D-NMR experiments performed in
H>O solution, 8 mg of the lyophilized non-labeled and
labeled RD3 samples was dissolved in 0.5 ml gfH

AFPs, and possesses about 1.9 times higher activ-(H20 : DO = 9 : 1) containing 25 mM of KCI and

ity compared with the ordinary Type Ill AFP on a
molar basis. Although the structure of the N-domain
plus linker portion (residues 1-76) was clarified re-
cently (Miura et al., 1999), the overall structure of

1 mM of NaN to give a final concentration of 1 mM
(pH 6.8). For the experiments performed in@ so-
lution, 8 mg of the non-labeled sample was dissolved
in 100% DO containing 25 mM of KCl and 1 mM of

intact RD3 is not determined yet. We have succeeded NaNs to give a final concentration of 1 mM (pH 6.8).

in expressing non-labeleteN-labeled and-3C-/*°N-
labeled recombinant protein of RD3, for which the
antifreeze activity was identified. Here we report the
2D- and 3D-NMR-based assignments of #é 13C
and™®N resonances of RD3.
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PDF-OUTPUT

The NMR experiments were performed on JEOL
JNM-Alpha and Varian Unity-500 spectrometers at
4°C. The following sets of 2D- and 3D-NMR data
were acquired for the spectral assignments ofthe
13C- and!®N-resonances: (1) NOESY ing (70 ms,
512 x 256); (2) {*>N-'H}-HSQC (512 x 256);
(3) {13C-1H}-HSQC (512 x 256); (4) °N-edited
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Figure 1. 1H-15N-HSQC spectrum of RD3 obtained at°@.
15N-labeled RD3 sample was dissolved in 0.5 ml ohQH

(H20 : D20 = 9: 1) containing 25 mM of KCl and 1 mM of NaiN
to give a final concentration of 1 mM (pH 6.8).

NOESY (100 ms, 512 128 x 32); (5) 1°N-edited
TOCSY (100 ms, 512x 128 x 32); (6) HNCA
(512 x 32 x 32); (7) HNCACB (512x 128 x 32);
(8) CBCA(CO)NH (512x 40 x 26); (9) C(CO)NH
(512 x 96 x 32); (10) HC(CO)NH (512« 96 x 32);
(11) HCCH-TOCSY (512 64 x 96). The 3D-HNHA
(512 x 160 x 96) experiments were performed to ob-
tain the3J-coupling constants between NH an#iHC
protons.

In the 2D and 3D experiments, tH&l chemical
shifts were referenced to 2,2-dimethyl-2-silapentane-
5-sulfonate sodium salt (DSS). THEC and 1°N
chemical shifts were referenced using internal DSS
and the frequency ratiod (*°N/*H) = 0.101329118,
(13C/*H) = 0.251449519 (Wishart et al., 1995). All of

originating from the nine residues of the linker portion
of RD3.

Extent of assignments and data deposition

Al of the 'HN-, H-, 15N-, 13c%-, and 3Ch-
assignments were completed except for #3€f-
resonances of I and Prd’. We compared the
chemical shifts of all the assigned resonances orig-
inating from the N-terminal globular domain (Ser
Glu®%) with those from the C-terminal globular do-
main (Sef*Glu'®. It was found that the chemi-
cal shifts of the G-resonances of the N-domain are
almost identical to those of the C-domain within
+/—2.0 ppm for the conserved residues. However,
the chemical shifts of the conserved residues are not
perfectly coincident for thé®N, THN, and 13CaH-
resonances between the two domains. A total of
80 3JNH-_H« coupling constants out of 134 were
identified without signal overlapping. The chemical
shift assignments and tReNH_Ho coupling constants
have been deposited in the BioMagResBank database
(http://www.bmrb.wisc.edu) under accession number
4449,
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